ID |
Date |
Author |
Type |
Category |
Subject |
60
|
Fri Jan 11 06:56:01 2013 |
Jessica Tomlinson | Other | General | multiplicities, hit patterns and good hits in an event |
I have attached a pdf of a series of slides with some multiplicity and hit pattern plots on, also a list of cuts. As well as this I looked at how many 'good hits' (explained in pdf) I am getting per event.
Before Christmas I found that the code was not clearing the raw arrays read in by MIDAS and so unless a new piece of data filled the array channel number the data from the last event was being read into the next event too. It was only clearing the 'data(i) arrays which is what the data is unpacked as. I have now got it clearing both so data is not read in for multiple events. |
33
|
Tue May 24 00:01:03 2011 |
Oliver and Hicham | Routine | | end of shift summary |
Things have been running smoothly from 4 pm to midnight.
Reading in FC0 = 120-130 epA
Total trigger (accepted trigger) = 7500 (4000) Hz
Gas temperature has dropped from 30 to 22 deg C (due to evening cooling of experimental hall?). As a consequence, pressure has dropped by 0.2% (current value 249.8 torr).
Runs during this shift: 87, 88, 89, 90, and 91 (still running).
Runs 87-90 have been analyzed with sorting code.
Good night
|
36
|
Tue May 24 08:18:23 2011 |
Mike Bentley | Routine | General | end of shift summary |
We have been running smoothly all night. Only problem is that the DAQ occasionally does not start properly after a stop-go. The dead-time goes to nearly 100%. This happened twice in the night,. and a second stop-go did the trick. Needs looking at.
We are going to stop now and (a) check the tune properly and (b) retune if necessary and then carry on the same energy. There is not really evidence in the data of the structure we are looking for, so we need to carry on at this energy for a while. This process will take 6 hours or so
MAB |
59
|
Tue Dec 4 05:40:10 2012 |
Jessica Tomlinson | Other | Other | analysis - single strip E vs t |
I have attached some single strip energy vs time plots to show that the structure seen in the collective E vs t plots is in each strip.
Attachments 1 and 2 show two different strips in S2-2 with no cuts. You can see that the 3 loci are different to one another in the single strips as well as in the combined S2-2 E vs t plot shown in attachment 3. Attachement 3 is plotted after applying the following cuts: equal energy in the front and back of each detector, low energy cut, must be a hit in each detector, multiplicity must be greater than 3. The 3 different loci are a beam pulse apart. The energy cal is 40keV/chan.
Attachments 4 and 5 show energy vs time for single strips in S2-1 with no cuts. Attachment 6 shows the combined front strips in S2-1 after the same cuts as above for the combined S2-2 plot have been applied. Now there are 2 loci in the same beam pulse which are still there after the cuts. Not sure what the second line is. The energy cal in attachment 6 is 80keV/chan. |
17
|
Sat May 7 17:29:13 2011 |
JB | | | Window leak tests on TUDA |
Attached plot shows rate of pressure increase in ~2l volume upstream of TUDA with Ni window #2 installed on reentrant flange. Comparison between
a)pumping out TUDA and 2l volume, and
b) filling TUDA with ~340mbar of He and pumping out 2l volume.
In both cases, 2l volume isolated from pumps at start.
Gradients are comparible, hence no detectable He leak through window.
Will repeat with other windows and blank flange tomorrow. |
9
|
Wed Apr 13 09:37:51 2011 |
Tom Davinson | | | Wednesday 13 April |
09.20 TUDA2.PNG5 1.04E-06Torr
See attachments 1 & 2 for EPICS log of pump down and overnight
pumping
09.37 Vent TUDA
14.00 S2-2 and W positions swapped
Coolant loop disconnected - needs to be re-tested
15.08 Time to 250mTorr ~12m
Time from 250mTorr to 4.75-05Torr ~28m
See attachment 3
15.36 FTS RS44 set point +5.5 deg C
17.00 TUDA2.PNG5 4.5E-06Torr
17.14 FTS RS44 set point +22 deg C
17.31 TUDA2.PNG5 6.2E-06Torr
Cryo closed and turbo pump switched off. Will monitor leak-in rate
from good vacuum (< 1E-05 Torr) overnight.
|
20
|
Sun May 15 13:07:12 2011 |
JB | | | W detector V-I curve |
York W detector 2635-19
1037um |
37
|
Tue May 24 20:45:12 2011 |
Mike Bentley | Other | General | Update for during the day 24th May, wednesday |
Update:
W decided at 8.00 to stop, check the tune, retune and get back going. This has nearly, finished but it is a very long process indeed - note for future - this takes AT LEAST 12 hours, if one is systematic about it.
We tested the tune as it was - it was OK, (90% transmission or so acdording to a straight ratio of the cups) but there are a fair bit on the 4mm collimator.
Marco then tuned, and improved it with a high intensity tune, reduced the rate on the collimator by at least a factor of 5 - maybe more. Good position on scintillator - see photo below.
We have since pumped out and run several tests with the window in, but no gas: (1) 10mm collimator on first target ladder, nothing on second - transmission was about the same, measured the same way. Rate similar to same test we did a couple of days ago. (2) 5mm collimator and blank second target - result about the same. (3) 5mm collimator and scintillator in - photo below. Beam spot blew up a bit compared with no gas. See below. (4) 5mm collimator and PD2 (5) 5mm collimator and blank. Ran this to disk. and (6) CH2 target. This made no sense and we got a lot of horrible ate of this so we stopped it.
We saw noise in S2-2 when we had no gas. It was bad - 1200Hz with no beam - all from S2-2. When we put gas in, it all went away! We suspect that it was a gauge that we disconnected, perhaps.
Waiting for beam, as buncher has now tripped.
Note that full cycle (pump, flush, vent, tune, flush, pump H2) - with all the tests as you go along, took 12 hours!
The pictures below are tunes without and with the window. From Mikes iphone. !
|
6
|
Tue Apr 12 11:21:38 2011 |
Tom Davinson | | | Tuesday 12 April |
The TUDA @ ISAC-II grounding test was successfully completed this am
per work permit 2011-04-12-2.
We measured 60V/0mA (with PSU) and 0.385MOhm with a Digital multimeter.
The TUDA grounding test is now complete. The TUDA ground breaker switch
is now closed and locked. The lockout key has been returned to ISAC Ops.
11.27 TUDA2.PNG5 6.27E-07Torr
11.30 Vent to install experiment configuration and coolant loop
14.00 Experiment configuration (https://elog.triumf.ca/Tuda/S1287/2)
installed.
Coolant loop installed.
FTS RS44LT recirculating chiller coolant (ethanol) drained from
reservoir and returned to 5-litre red plastic gerry can - now stored
in Pat Walden's N. Cupboard in the ISAC-I hall.
FTS RS44LT coolant now 7-stage filtered water from ISAC-II cleaner's
room (on the corridor to rooms 148 & 154).
FTS RS44LT Set Low (SL) parameter changed from -43 deg C to +5 deg C
15.00 Test of coolant loop in air - no gross leaks
15.30 Commence pump down to test coolant loop at vacuum
See attachment 1 - time from turbo ON to 5.0E-5Torr ~18m
FTS RS44 switched on ~25' before datum - set point +5.5 deg C
TUDA.PNG5 pressure continues to decrease - coolant loop appears
to be OK
16.55 FTS RS44 temp +5.8 deg C
TUDA2.PNG5 9.24E-06Torr
FTS RS44 set point +22 deg C
Will leave pumping overnight with FTS RS44 off |
14
|
Thu May 5 11:31:13 2011 |
JB | | | Tom's ToDo List |
Version 2 of ...
- re-test chamber/coolant loop with vacuum cycle - done
- install MSL Type W preamp - done
- to adjust position of support ring, temporarily loosen grub
screws of *all* support rings - secure *all* grub screws
when finished
- use 9/16" spanner and adjustable wrench for mechanical support
for Swagelok connectors - done
- test for gross leaks at air - done
- test preamp with pulser - done
- re-test coolant loop with vacuum cycle - done
- move linear translator from position #3 to #1 - done
- align target ladders & re-entrant flange window
- select appropriate collimator (TUDA chamber entrance flange)
- install & test Faraday cup
- Ortec 439 or EPICS readout
for the former, scaler readout is setup
for the latter, startup EPICS TUDA diagnostics
- install & test CCTV camera to view ZnS scintillator
- remember we will replace viewport with H2 feedthrough
- TV monitor in ISAC Control Room
- connect via cable #2
- use cable #1 for Keithley 610C Electrometer
- mark screen with position of 3mm dia. tuning aperture
- install additional thermocouple to monitor ambient gas temperature?
- TUDA S Cupboard ISAC-I for thermocouple & switch
- install & test re-entrant flange windows with He
- assumes bypass has been installed
- install detectors
- measure actual positions of detectors
- alpha & pulser calibration
- install detector shields for *all* detectors for beam tuning
- tune all required beam energies up front
- grab screenshots of each tune from ISAC Ops log to obtain
exact beam energy from ToF diagnostic
- remove detector shields
- RF delay timing (with beam)
|
10
|
Thu Apr 14 10:06:34 2011 |
Tom Davinson | | | Thursday 14 April |
10.02 See attachment 1 for overnight EPICS log of TUDA2.CG5
Downstream flange secured by four bolts
Current pressure 1.07Torr - rate of increase ~0.2 Torr/5h
11.30 TUDA chamber pumped down to ~800mbar
Downstream flange bolts removed - no change in pressure observed
N2 bottle connected to TUDA vent valve - to vent and (hopefully)
exceed atmospheric pressure forcing downstream flange to move open
Pressure measured using MKS Baratron 1000Torr gauge
Result - pressure increased from 800 to ~1000mbar in ~45s
TUDA chamber pressure did not noticably exceed atmospheric
pressure and there was no obvious movement of downstream flange.
Gas could be felt escaping from sides of downstream flange.
Conclude - contact with downstream flange O-ring failed at, or near,
atmospheric pressure - this prevented buildup in excess of atmospheric
pressure
11.50 Installed:
preamp services (+/-15V preamp power, +/- preamp test inputs) - 10-way IDC
ribbon cables
detector HT - SMC/BNC cabling
preamp signals - 34-way IDC twist-n-flat ribbon cables
preamp thermocouple attached to an S2-1 preamplifier
15.00 Time to 250mTorr ~14m
Time from 250mTorr to 4.75E-5Torr ~45m
See attachment 2
16.04 FTS RS44 set point +5.5 deg C
16.21 FTS RS44 temperature +5.6 deg C
17.12 TUDA2.PNG5 8.2E-06Torr
FTS RS44 temperature +5.8 deg C
Preamp thermocouple +8 deg C
17.13 +/-15V preamp power ON
17.18 Preamp thermocouple +14 deg C
TUDA2.PNG5 8.0E-06Torr
17.23 Preamp thermocouple +14 deg C
TUDA2.PNG5 7.9E-06Torr
17.28 Preamp thermocouple +15 deg C
TUDA2.PNG5 7.7E-06Torr
17.43 Preamp thermocouple +15 deg C
TUDA2.PNG5 7.0E-06Torr
CAEN SY403 HV mainframe
Channel HT Detector Bias I_L
(V) (uA)
1 1 S2-1 -130 -0.03
2 2 S2-2 -130 -0.06
3 3 W -250 -0.02
4 4 PD -30 -0.03
Low leakage currents as expected - no evidence of high resistance
shorts
All other channels set to 0V
+/-15V PSUs
#1 +15V/0A -15V/0A (MSL type W preamp not installed)
#2 +15V/1.65A -15V/0.65A (2x MSL type S2 + 1x 16ch PD preamp units)
17.58 Preamp thermocouple +13 deg C
TUDA2.PNG5 6.3E-06Torr
18.13 Preamp thermocouple +12 deg C
TUDA2.PNG5 5.8-06Torr
18.29 Preamp thermocouple +12 deg C
TUDA2.PNG5 5.3-06Torr
18.32 +/-15V preamp power OFF
FTS RS44 set point +21 deg C
18.39 Cryo gate valve closed
Turbo off and isolated
4x bolts securing downstream flange removed
Repeat yesterday's leak-in test (bolts removed)
|
46
|
Thu May 26 23:46:40 2011 |
Sarah and Brian | Routine | General | Thu 16:00-00:00 summary |
Run139
Started 19:05:03
Stopped 20:36:36
Rates were reaching well above 8500, ops were measuring 160 epa on FC0 so they decreased it to 120 epa before starting next run.
Run 140
Started 20:42:12 - Scalers were acting up, stopped the run
Stopped 20:55:50
Run 141
Started 20:56:14
Stopped at 22:50:02
Rates were too low (~4289), ops were measuring 70 epa on FC0, got ops to increase current to 120 epa before starting next run.
Run 142
Started 22:56:34
Stopped 23:32:13
Rates were reaching above 9000 again, ops were reading 150 epa on FC0. Brought it back down to 115 epa before starting next run.
Run 143
Started 23:36:38 - scalers were acting up, stopped the run
Stopped 23:37:46
Run 144
Started 23:40:17
****submitting summary early in case browser crashes again. will update with any changes. |
44
|
Thu May 26 02:54:10 2011 |
Derek and Naomi | Routine | General | Thu 0-8am shift summary |
For run 123:
Beam outage for ~15 min but not stopping run.
FC0 = 120pA when we got beam back.
We'll let the run go 15 min longer.
Run 125 stopped early because of strange rate values on scalar 1.
Sorted Runs:
Finished 121
122
123
124
|
22
|
Tue May 17 12:32:13 2011 |
Jamie Brown | | | Thick carbon target |
The thick carbon target, to be used for background runs for the thick CH2 measurement was supplied by Marek.
He measured it to be 120um thick (with a micrometer), and says it's low density carbon (1.03g/cm3).
The range of a 68 MeV Ne beam in this is 67um.
Range of 16 MeV alphas is 266.5 um. |
2
|
Sat Apr 9 11:35:14 2011 |
Tom Davinson | | | TUDA configuration & setup |
Nominal detector configuration for S1287 is as follows:
Detector Tgt Ladder #2
-Detector Nominal LAB Solid
Distance (cm) Angles (deg) Angle (sr)
S2-1 7.0 9.5-26.4 0.430
S2-2 28.0 2.4-7.1 0.032
W >35.0 0.0-4.1 ~0.020
S2-1 MSL type S2(DS)-500
S2-2 MSL type S2(DS)-500
W MSL type W(DS)-1000
Hardware installed in TUDA chamber is as follows (listing from
upstream to downstream):
1 Upstream support collar
2 PDs (to monitor Ni window)
PD preamplifier assembly
3 4mm dia collimator
CCTV camera?
Target Ladder - Position #1 - 83cm from inner surface of the downstream flange
5mm dia anti-scatter collimator
PDs (to monitor 197Au RBS)
Target Ladder - Position #2 - 75cm from inner surface of the downstream flange
10mm & 3mm dia tuning apertures, ZnS, PDs, (CH2)n targets
4 S2-1 DSSSD
S2 preamplifier assembly
5 S2-2 DSSSD
S2 preamplifier
6 W DSSSD
W preamplifier assembly (to be shipped to TRIUMF)
7 Faraday Cup
8 Downstream 4-vane monitor (not used)
Detector mounts will be within +/-5mm of their nominal positions. |
13
|
Sun Apr 17 09:47:04 2011 |
Tom Davinson | | | Sunday 17 April |
Continuation of yesterday's test with c. 300mBar of He
in the TUDA chamber.
Bourdon MKS S2 preamp
Baratron Thermocouple
(mBar) (Torr) (deg C)
09.45 300 222.8 +21
10.44 300 222.9 +21
11.48 300 223.1 +22
11.49 FTS RS44 set point +22.0 deg C
+/-15V preamp power ON
12.01 300 223.4 +26 FTS RS44 @ set point
12.31 300 223.7 +26
13.00 300 223.9 +26
13.01 FTS RS44 set point +15.0 deg C
13.11 300 223.4 +21 FTS RS44 @ set point
13.41 300 223.0 +22
14.11 300 222.9 +22
15.14 300 222.9 +22
16.11 300 222.9 +22
17.11 300 223.1 +22
18.16 300 223.1 +22
19.10 300 223.2 +22
20.19 300 223.1 +21
20.20 +/-15V preamp power OFF
FTS RS44 set point +20 deg C
20.25 Bolts securing downstream flange re-installed
- finger tight only
20.45 Vent TUDA chamber to air, i.e. chamber contains He & air
See attachment 1. Conclude that the preamps can be operated with
the FTS RS44 recirculating chiller set point +15 deg C with 300mBar
of He. The S2-1 preamplifier thermocouple indicates that the preamplifiers
are operating at about ambient temperature with little apparent effect
on gas pressure.
N.B. For vacuum operation, the FTS RS44 set point should be +5.5 deg C
Pulser tests
BNC PB-4 settings:
Amplitude 90,000 x5 attenuator IN
frequency 266Hz
delay MIN
tail pulse
t_r 50ns tau_d 1000us
INT ref
polarity + (for p+n junction strips, - for n+n ohmic strips)
All ADC & TDC channels OK
ADCs
FWHM
Detector (ch) (keV)
S2-1 p+n #23 1.6 30
S2-1 n+n #8 1.6 30
S2-2 p+n #23 1.7 15
S2-2 n+n #8 1.8 16
W p+n #8 2.2 19 } using signals
W n+n #8 4.3 37 } from S2-2 preamps
PD #0 1.7 81
TDCs (0.8ns/ch)
Centroid FWHM
Detector (ch) (ch)
S2-1 p+n #23 245 1.4
S2-1 n+n #8 254 1.9
S2-2 p+n #23 253 1.7
S2-2 n+n #8 260 1.8
W p+n #8 254 1.8
W n+n #8 266 1.2
PD #0 233 1.6 |
25
|
Wed May 18 09:09:02 2011 |
Alison Laird | | | Status update |
Wednesday morning:
4 new windows were tested last night. 2 very good.
Now venting to install and test Faraday cup, install and test camera.
Remaining to do list:
Before beam -
beamline on SEBT back in and pumping upstream section
(measure C and C/Au target thicknesses if time)
replace 4mm collimator on plate with 10 mm for tuning
confirm PD0 problem just connector
install detector shields and pump down
walk round TUDA and check no grounding compromises
Before running -
runplan
procedures tick list for H2
runlog and detector current list
exclusion zone and Al plate before running H2 |
39
|
Wed May 25 03:15:44 2011 |
Brian | Routine | General | Start of run summary and TDC problems |
Summary at start of run
Read through the runbook and end of run summar and the situation appears to be:
1. The check of the tune showed it was OK, although a bit of beam (or halo) clipping 4mm collimator
2. There are some changes to the gas filling scheme - Jamie should be present for the next one.
3. Evidence that the gas pressure is dropping slowly - need to watch this
4. Trigger is Coinc.OR.SS_2.OR.PD. Rate at this is 200/s at 4epA (50/50 Coinc and S2_2)
5. Suggestion we could increase the beam a factor of two to get back to the same coinc rate.
Analysis. Looking at the rates I see:
Running at 66 pnA and see about 4,000/s triggers and 3,200/s accepts. Scaler 9 over 40,000/s.
Looking back in run book the max trigger accept rate we see is about 3,800/s. Could double beam and gain only
modest increase on accepted rate, but at cost of faster damage of detector. Suggest we run
like this for a bit and make sure all is well.
Took a look through the spectra. All ADCs OK, but no TDC signals. Checked past saved runs. There up
to run 98. The next saved on disc is run 104 and they aren't there. Nor in any saved runs after this.
Looked at electronics and reason clear as the module providing the TDC trigger (lower section of a
429 unit) has no input. Eventually determined that it would make sense if this unit was operating
in 2 x 8 mode rather than what it is currently set on (4x4). Switched this over and now working OK.
Assume this was changed inadvertently during all the work on the chamber yesterday.
0300. Running again and all ADC and TDC spectra make sense. Off for a cup of tea. |
29
|
Mon May 23 02:12:14 2011 |
Brian | Routine | | Start of Run summary |
Handover from last shift was...
1. Running at 4.11 MeV/u at about 15enA (5+)
2. Would like to take more beam but already at situation where deadtime about 50%. They have been raising thresholds on the inner strips of S2-1 to try and cure that, but it doesn't appear to have helped.
3. There is a sort of the past runs ongoing to use the counts in spectrum 4200 (coincidences) to estimate when there is enough data at this energy to move to the next.
Analysis:
Firstly, the locus being looked at in the S2-1 vs S2-2 to make this judgement cant be right. There are already thousands of counts in this in a replay of a one hour run Jamie's estimates in the run proposal were for 1,000 in 12 hours at 10**8/s. We are currently at 20% of that beam intensity and the deadlime is about 50%, so should be seeing 10 counts in one hour. The data must be somewhere else in the plot. My guess is that the intense locus is elastic/inelastic scattering coincidences. If this is the case then it maybe we have an issue in that these may be what is dominating the rate and it will not be possible to get rid of them from the trigger.
Looking at the S2-1 energy spectra, it looks like the raised threshold is cutting into potential data (maybe Alex who knows from the MC what energy the data extends down to should look at this and check). The high trigger ratemust be from another channel.
Actions for this shift
1. With two people on shift and a requirement that we need two down in the area at all times, I don't think chasing thresholds is viable. This will have to be left to the day shift.
2. Should continue the sorts so that we have the spectra available to make rate estimates once we know what we are looking for.
3. Should look at the sort code to see what calibrations are being used and so determine where on the coincidence spectrum the data should lie. |
15
|
Fri May 6 06:03:00 2011 |
Tom Davinson | | | Sort programs, spectra titles & calibration procedure |
A summary of online sort programs can be found at:
~/S1287/sort/README
Program sort2.f remains to be completed.
VME and sort spectra titles can be found in directory:
~/S1287/titles
A summary of the calibration procedure can be found at:
~/S1287/calibration/README |